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First, some images of the summit of 
Mauna Kea, HI 

•      Keck 2         Subaru 
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•  Movie of 3 lasers in operation on Mauna Kea, HI:  

https://vimeo.com/24338510 
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Outline of lectures on laser guide stars  

•  Why are laser guide stars needed? 

•  Principles of laser scattering in the atmosphere 

–  Rayleigh scattering, resonant scattering from sodium 

•  What is the sodium layer?  How does it behave? 

•  Physics of sodium atom excitation 

•  Lasers used in astronomical laser guide star AO 

•  Wavefront errors for laser guide star AO 
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Laser guide stars: Main points 

•  Laser guide stars are needed because there aren’t enough 
bright natural guide stars in the sky 

–  Hence YOUR favorite galaxy probably won’t have a bright 
enough natural guide star nearby 

•  Solution: make your own guide star using lasers 
–  Nothing special about coherent light - could use a flashlight 

hanging from a “giant high-altitude helicopter” 
–  Size on sky has to be ≲ diffraction limit of a WFS sub-aperture 

•  Laser guide stars have pluses and minuses: 
–  Pluses: can put them anywhere, can be bright 
–  Minuses: NGS give better AO performance than LGS even when 

both are working perfectly.   High-powered lasers are tricky to 
build and work with.  Laser safety is added complication. 
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Two types of laser guide stars in use 
today: “Rayleigh” and “Sodium” 

•  Sodium guide stars: excite 
atoms in “sodium layer” at 
altitude of ~ 95 km 

•  Rayleigh guide stars: 
Rayleigh scattering from air 
molecules sends light back 
into telescope, h ~ 10 km 

•  Higher altitude of sodium 
layer is closer to sampling 
the same turbulence that a 
star from “infinity” passes 
through 

Telescope 

Turbulence 

8-12 km 

~ 95 km 
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Reasons why laser guide stars can’t do 
as well as bright natural guide stars 

1)  Laser light is spread out by turbulence on the way up. 
–  Spot size is finite (0.5 - 2 arc sec) 
–  Can increase measurement error of wavefront sensor 

»  Harder to find centroid if spot is larger 

2) For Rayleigh guide stars, some turbulence is above altitude 
where light is scattered back to telescope.   

- Hence it can’t be measured. 

3) For both kinds of guide stars, light coming back to telescope 
is spherical wave, but light from “real” stars is plane wave 

–  Some turbulence around edges of the pupil isn’t sampled well 
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Laser beacon geometry causes 
measurement errors  

Credit: Hardy 
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Why are laser guide stars needed? 

•  Wavefront error due to anisoplanatism: 
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Example: At Keck θ0 ~ 10 arc sec x ( λ / 0.5 micron)6/5 	

What is σϕ2 for θ = 40 arc sec at λ = 1 micron?                 	
What is Strehl loss due to anisoplanatism? 

Answers:  σϕ2 = 2.52 rad2,   Strehl = 0.08 x Strehl at  θ = 0	
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How many bright stars are there? 

•  There are about 6 million stars in the whole sky brighter 
than 13th magnitude 

•  Area of sky = 4 π  r2 =  4 π  (360 / 2π)2 

 sky contains (360 deg)2 / π sq deg = 41253 sq deg 

•  Question: How many stars brighter than 13th mag are 
there per square arc sec on the sky? 
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If we can only use guide stars closer than 
~ 40 arc sec, sky coverage is low! 

•  High-order Shack-Hartmann AO systems typically need 
guide stars brighter than magnitude V ~ 13.5  
[V band: central wavelength ~ 0.54 µm] 

•  Surface density of these stars on the sky is                    
Σ ~ 10-5 / (arc sec)2 

•  So probability P of finding bright enough guide star w/in 
radius of 40 arc sec of an arbitrary place in the sky is  

P = Σ π (40)2 = 10-5 π (40)2 = 0.05 

•  Magnitude V ~ 13.5 stars only have 5% sky coverage! 
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Sky coverage for curvature sensing AO 
system 

•  Can use fainter guide 
stars, sometimes at 
expense of lower Strehl 
ratio 

•  Graph trades off guide 
star brightness with 
distance from guide 
star 
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Solution: make your own guide star using 
a laser beam 

•  Point the laser beam directly at YOUR favorite 
astronomical target 

•  Use scattering of laser light by the atmosphere to 
create an “artificial” guide star 
–  Sometimes called “synthetic beacon” or “artificial 

beacon” 

•  What physical mechanism causes the laser light to 
scatter back down into your telescope’s wavefront 
sensor? 
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Scattering: 2 different physical processes  

•  Rayleigh Scattering (Rayleigh beacon) 
–  Elastic scattering from atoms or molecules in 

atmosphere.  Works for broadband light, no change 
in frequency 

•  Resonance Scattering (Sodium Beacon) 
–  Line radiation is absorbed and emitted with no 

change in frequency. 
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Regardless of the type of scattering... 

Number of photons detected =  

 (number of transmitted photons  

 x probability that a transmitted photon is scattered  

 x probability that a scattered photon is collected  

 x probability that a collected photon is detected)  

 + background photons (noise) 
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Amount of Photon Scattering 

•  # molecules hit by laser beam in volume σbeam  Δz = nmol (σbeam  Δz ) 

•  Percentage of beam scattered = [ nmol ( σbeam Δz ) ] σB /σ beam 

•  Total number of photons scattered = ( EL / hν ) ( nmolσB Δz )  

•  EL and ν  are laser’s energy and frequency, h is Planck’s constant  

nph = # of photons 
σbeam = laser beam cross-

   section	
 nmol = density of scatterers  
 σB = scattering cross-section   
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Percentage of photons collected 

•  Assuming uniform emission  
over 2π steradians, scattered 
photons are uniformly 
distributed over area 

                                               

 

•  Percentage of photons 
collected =  AR / ( 4 π  R2) 
where AR  is receiver area 

R2sinθdθdφ = 4
0

π
∫

0

2π
∫ πR2
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LIDAR Equation  
(LIght Detection And Ranging) 
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Rayleigh Scattering 

•  Due to interactions of the electromagnetic wave from 
the laser beam with molecules in the atmosphere. 

•  The light’s electromagnetic fields induce dipole 
moments in the molecules, which then emit radiation at 
same frequency as the exciting radiation (elastic 
scattering). 
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Rayleigh Scattering cross section 

•  Rayleigh backscattering cross section is    

where  λ  is laser wavelength 

•  Scattering ∝ λ- 4  ⇒ use shorter wavelength lasers for better 
scattering efficiency 

•  Why sunsets look red: 

σ B
R =

dσ R θ = π( )
dΩ

≅
5.5 ×10−28

λ
0.55µm( )4   cm2sr−1
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Dependence of Rayleigh scattering on 
altitude where the scattering occurs 

•  Product of Rayleigh scattering cross section with 
density of molecules is  

 
where P(z) is the pressure in millibars at altitude z, 

and T(z) is temperature in degrees K at altitude z 

•  Because pressure  P(z)  falls off exponentially with 
altitude, Rayleigh beacons are generally limited to 
altitudes below 8 - 12 km 

σ B
Rnmol ≅  3.6 ×10−31  P(z)

T (z)
 λ−4.0117   m-1  sr-1
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Rayleigh laser guide stars use timing of 
laser pulses to detect light from Δz 

•  Use a pulsed laser, preferably at a 
short wavelength (UV or blue or 
green) to take advantage of  λ-4 

•  Cut out scattering from altitudes 
lower than z by taking advantage of 
light travel time z/c 

•  Only open shutter of your wavefront 
sensor when you know that a laser 
pulse has come from the  desired 
scattering volume Δz at altitude z 
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Rayleigh laser guide stars 

•  LBT ARGOS  
laser guide star  

•  Starfire Optical 
Range, NM.  
Quite a few 
years ago. 

MMT laser guide 
star, Arizona 

Robo-AO  
UV laser 
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 Sodium Resonance Fluorescence 

•  Resonance scattering occurs when incident laser is 
tuned to a specific atomic transition. 

•  Absorbed photon raises atom to excited state.  Atom 
emits photon of same wavelength via spontaneous or 
stimulated emission, returning to original lower state. 

•  Large absorption and scattering cross-sections. 

•  Layer in mesosphere ( h ~ 95 km, Δh ~ 10 km) 
containing alkali metals, sodium (103 - 104 atoms/cm3), 
potassium, calcium  

•  Strongest laser return is from D2 line of Na at 589 nm. 
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Outline of laser guide star topics  

 

✔  Why are laser guide stars needed? 

✔  Principles of laser scattering in the atmosphere 

•  What is the sodium layer?  How does it behave? 

•  Physics of sodium atom excitation 

•  Lasers used in astronomical laser guide star AO 

•  Wavefront errors for laser guide star AO 
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The atmospheric sodium layer:  
altitude ~ 95 km , thickness ~ 10 km 

•  Layer of neutral sodium atoms in mesosphere (height ~ 95 km) 

•  Thought to be deposited as smallest meteorites burn up 

Credit: Clemesha, 1997 

Credit: Milonni, LANL 
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Rayleigh scattering vs. sodium resonance 
fluorescence 

•  M = molecular mass, n = no. 
density, T = temperature, k = 
Planck’s constant, g = 
gravitational acceleration  

•  Rayleigh scattering dominates 
over sodium fluorescence 
scattering below h = 75 km. 

•   Atmosphere has ~ exponential density profile: 

Cartoon 
 
 −∇(nkT ) = nMg⇒ n(z) = no exp- Mg z

kT
⎛
⎝⎜

⎞
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Rayleigh scattering vs. sodium resonance 
fluorescence 

•  M = molecular mass, n = 
number density, T = 
temperature, k = Planck’s 
constant, g = gravitational 
acceleration  

•  Rayleigh scattering dominates 
over sodium fluorescence 
scattering below h = 75 km. 

 
 −∇(nkT ) = nMg⇒ n(z) = no exp- Mg z

kT
⎛
⎝⎜

⎞
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•   Atmosphere has ~ exponential density profile: 

Real data:  
Kumar et al. 2007  
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Image of sodium light taken from 
telescope very close to main telescope 

Rayleigh scattered light 
from low altitudes 

Light from Na layer 
at ~ 100 km 

Max. altitude of 
Rayleigh ~ 35 km 

View is 
highly 
fore-
shortened 



Page 30    	

Can model Na D2 transition as a two-level 
atom (one valence electron) 

Hyperfine 
splitting	

Hyperfine 
splitting (not 

to scale)	

•  Hyperfine splitting: spins of valence electron and nucleus 
are (or are not) aligned 

•  Separation between upper three hyperfine states is small 

•  Separation bet. two ground states is large:  1.8 GHz 
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Overview of sodium physics 

•  Column density of sodium atoms is relatively low  
–  Less than 600 kg in whole Earth’s sodium layer! 

•  When you shine a laser on the sodium layer, the 
optical depth is only a few percent.  Most of light 
just keeps on going upwards. 

•  Natural lifetime of D2 transition is short: 16 nsec 

•  Can’t just pour on more laser power, because 
sodium D2 transition saturates: 
–  Once all the atoms that CAN be in the excited 

state ARE in the excited state, return signal stops 
increasing even with more laser power 
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Origin of sodium layer 

•  Layer 10 km thick, at an altitude of 90 km  - 105 km in 
the Earth’s “mesosphere” 

•  Thought to be due to meteorites: at this altitude, small 
meteorites aimed toward the Earth first get hot enough 
to evaporate 
–  Deposit their elements in atmosphere in atomic 

state: iron, potassium, sodium, lithium, ….. 
–  Atomic layer is “eaten away” at its bottom by 

chemical reactions (e.g. oxidation reactions) 
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Sodium abundance varies with season 

•  Equatorial regions: 
density is more 
constant over the 
year, but peak is 
lower 

•  Temperate regions: 
lowest density in 
summer 

–  Chemical 
reactions at 
bottom of layer: 
Na ➞ sodium 
bicarbonate  

70°N 40°N 

Equator 20°S 
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Time variation of Na density profiles 
over periods of 4 - 5 hours 

Night 1: single peaked Night 2: double peaked 

At La Palma, Canary Islands 
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Variability during night  
(UBC Na Lidar, Thomas Pfrommer) 
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Outline of laser guide star topics  

 

✔  Why are laser guide stars needed? 

✔  Principles of laser scattering in the atmosphere 

✔  What is the sodium layer?  How does it behave? 

•  Physics of sodium atom excitation 

•  Lasers used in astronomical laser guide star AO 

•  Wavefront errors for laser guide star AO 
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Atomic processes for two-level atom 

•  Einstein, 1916: atom interacts with light in 3 ways 

–  Spontaneous emission 

–  Stimulated emission 

–  Absorption 

dN1

dt
⎛
⎝⎜

⎞
⎠⎟ spont

= A21N2

dN1

dt
⎛
⎝⎜

⎞
⎠⎟ stim

= B21N2U ν( )

dN1

dt
⎛
⎝⎜

⎞
⎠⎟ abs

= −B12N1U ν( )

N1, N2  = density of atoms in states 1 and 2; U ν( )  = radiation density

Graphics 
credit: 

Wikipedia 
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Saturation effects in the Na layer, from 
Ed Kibblewhite’s chapter in Reader 

•  Consider a two level atom which initially has a ground 
state n containing Nn atoms and an empty upper state m. 
The atom is excited by a radiation field tuned to the 
transition  

!ν = Em- En/h,!!hν >> kT ! !!  !

•  In equilibrium !Bnm U(ν) Nn = AmnNm +Bmn U(ν) Nm !
! ! !!

   Amn is Einstein's A coefficient (= 1/lifetime in upper 
state).   Bnm  =  Bmn  = Einstein’s  B coefficient.                          
U(ν) is the radiation density in units of Joules/cm3 Hz !
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Check units: 

Bnm  U(ν)   Nn =  Amn  Nm  +  Bmn  U(ν)  Nm!

ergs / cm3 Hz sec-1 per atom 

# atoms (cm3 Hz / erg) sec-1 
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Saturation, continued 

•  Solve for  Nm = Nn Bnm U(ν) / [ Bnm U(ν) + Amn] !!

•  If we define the fraction of atoms in level m as f and the fraction in level n 
as ( 1 - f ) we can rewrite this equation as 

  f  =  Bmn U(ν) (1 - f ) / (Bmn U(ν) + Amn)!

! !! f  =  1/[2  +  Amn/ BmnU(ν)] ! !! !!

•  This equation shows that at low levels of radiation U(ν) the fraction of 
atoms in the upper level is   Bmn U(ν) / Amn  !

•  As the radiation density increases, fraction of atoms in upper level saturates 
to a maximum level of 1/2 for an infinite value of  U (ν). !

•  Define a saturation level as radiation field generating 1/2 this max:!

! !Usat(ν) != Amn/2Bmn ! ! !!!
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Usat is not a cliff: fraction in upper state 
keeps increasing for U >> Usat 

Fraction in upper state vs. U/Usat
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Saturation, continued 

•  The ratio Amn/Bmn is known from Planck's black body formula 

and is equal to   8πhν3/c3   joules cm-3 Hz!

•  The intensity of the radiation field I ( ν) is related to U ( ν) by 

! !I (ν) = U ( ν) c  watts/cm2 Hz ! !! !!

Isat ≈ 9.48 mW/cm2   for linearly polarized light !

•  In terms of photons Nsat = a few x 1016 photons/sec.  
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CW lasers produce more return/watt than 
pulsed lasers because of lower peak power 

Keck requirement:!
0.3 ph/ms/cm2!

3	

3	

•  Lower peak 
power ⇒ less 
saturation 

CW = “continuous wave” = always “on” 
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Laser guide stars: Main points so far 

•  Laser guide stars are needed because there aren’t 
enough bright natural guide stars in the sky 

•  Solution: make your own guide star 
–  Using lasers 
–  Nothing special about coherent light 
–  Size on sky has to be ≲ diffraction limit of a WFS sub-aperture 

•  Rayleigh scattering: from ~10-15 km:  
–  Doesn’t sample turbulence as well as resonant scattering from 

Na layer at ~100 km. Lasers are cheaper, and easier to build. 

•  Sodium laser guide stars:  
–  Sodium column density varies with season, and within a night 
–  Need to sense variation and follow it 
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Outline of laser guide star topics  

 

✔  Why are laser guide stars needed? 

✔  Principles of laser scattering in the atmosphere 

✔  What is the sodium layer?  How does it behave? 

✔   Physics of sodium atom excitation 

•  Lasers used in astronomical laser guide star AO 

•  Wavefront errors for laser guide star AO 



Page 47    	

Types of lasers: Outline 

•  Principle of laser action 

•  Lasers used for Rayleigh guide stars 

•  Lasers used for sodium guide stars 
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Overall layout (any kind of laser) 
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Principles of laser action 

Stimulated 
emission 

Mirror	
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General comments on guide star lasers 

•  Typical average powers of a few watts to 20 watts 
–  Much more powerful than typical laboratory lasers 

•  Class IV lasers (a laser safety category) 
–  “Significant eye hazards, with potentially 

devastating and permanent eye damage as a result 
of direct beam viewing” 

–  “Able to cut or burn skin”  
–  “May ignite combustible materials” 

•  These are big, complex, and can be dangerous.  Need 
a level of safety training not usual at astronomical 
observatories until now. 



Page 51    	

Lasers used for Rayleigh guide stars 

•  Rayleigh x-section  ~ λ-4  ⇒  short wavelengths better 

•  Commercial lasers are available 
–  Reliable, relatively inexpensive 
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Example: Frequency doubled Nd:YAG 
lasers 

•  Nd:YAG means “neodimium-doped  
yttrium aluminum garnet” 

•  Nd:YAG emits at 1.06 micron 

•  Use nonlinear crystal to convert two 
1.06 micron photons to one 0.53 
micron photon (2 X frequency) 

•  Example: Coherent’s Verdi laser 
–  Pump light: from laser diodes 
–  Very efficient 
–  Available up to 18 Watts 
–  Pretty expensive 

»  It’s always worrisome when 
price isn’t listed on the web! 
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Types of Rayleigh guide star lasers 

•  SOAR: SAM 

–  Frequency tripled Nd:YAG, λ = 0.35 µm, 8W, 10 kHz 
rep rate 

•  LBT: 

–  Frequency doubled Nd:YAG, λ = 0.53 µm, 15 W each, 
10 kHz rep rate 

•  William Herschel Telescope: GLAS 

–  Yb:YAG “disk laser” at λ = 0.515 µm, 18 W, 5 kHz 
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Lasers used for sodium guide stars 

•  589 nm sodium D2 line doesn’t correspond to any 
common laser materials 

•  So have to be clever: 
–  Use a dye  laser (dye can be made to lase at a range 

of frequencies) 
–  Or use solid-state laser materials and fiddle with 

their frequencies somehow 
»  Sum-frequency lasers (nonlinear index of refraction) 
» Raman scattering 
»  ... 
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Dye lasers 

•  Dye can be “pumped” with 
different sources to lase at 
variety of wavelengths 

•  Messy liquids, some flammable 

•  Poor energy efficiency 

•  You can build one at home! 
–  Directions on the web 

•  High laser powers require 
rapid dye circulation, 
powerful pump lasers 
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Dye lasers for guide stars 

•  Single-frequency continuous wave (CW):  always “on” 
–  Modification of commercial laser concepts 

–  Subaru (Mauna Kea, HI); PARSEC laser at VLT in Chile 

–  Advantage: avoid saturation of Na layer 

–  Disadvantage: hard to get one laser dye jet to > 3 watts 

•  Pulsed dye laser 

–  Developed for DOE - LLNL laser isotope separation program 

–  Lick Observatory, then Keck Observatory 

–  Advantage: can reach high average power 

–  Disadvantages: potential saturation, less efficient excitation of sodium 
layer 
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Lick Observatory 

Photo by Dave Whysong, NRAO 
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Keck laser guide star 
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Keck laser guide star AO Best natural guide star AO 

Galactic Center with Keck laser 
guide star AO 

Andrea Ghez, UCLA  group 
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Solid-State Lasers for Na Guide Stars: 
Sum frequency mixing  concept 

•  Texample: two diode laser pumped Nd:YAG lasers are 
sum-frequency combined in a non-linear crystal 

 

•  Kibblewhite (U Chicago and Mt Palomar), Telle and Denman (Air 
Force Research Lab), Coherent Technologies Incorporated (for 
Gemini N and S Observatories and Keck 1 Telescope)  

(1.06 µm)-1 + (1.32 µm)-1 = (0.589 µm)-1 
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Air Force laser at 
Starfire Optical Range 

•  Built by Craig Denman 
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New generation of  lasers: all-fiber laser 
(Toptica, Pennington and Dawson LLNL) 

•  Example of a fiber laser 
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Toptica fiber laser (ESO, Keck 2) 

Fiber 
laser Electronics 

and cooling 
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Advantages of fiber lasers 

•  Very compact 

•  Commercial parts from telecommunications industry 

•  Efficient:  
–  Pump with laser diodes - high efficiency 
–  Pump fiber all along its length - excellent surface to 

volume ratio 

•  Two types of fiber lasers have been demonstrated at 
the required power levels at 589 nm (Toptica in 
Europe, Jay Dawson at LLNL) 
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Questions about lasers? 
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Outline of laser guide star topics  

 

✔  Why are laser guide stars needed? 

✔  Principles of laser scattering in the atmosphere 

✔  What is the sodium layer?  How does it behave? 

✔  Physics of sodium atom excitation 

✔  Lasers used in astronomical laser guide star AO 

•  Wavefront errors for laser guide star AO 
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Laser guide star AO needs to use a faint 
tip-tilt star to stabilize laser spot on sky 

from A. Tokovinin 
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Effective isoplanatic angle for image 
motion:  “isokinetic angle” 

•  Image motion is due to low order modes of turbulence 
–  Measurement is integrated over whole telescope 

aperture, so only modes with the largest 
wavelengths contribute (others are averaged out) 

•  Low order modes change more slowly in both time and 
in angle on the sky 

•  “Isokinetic angle”  
–  Analogue of isoplanatic angle, but for tip-tilt only 
–  Typical values in infrared: of order 1 arc min 
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Tip-tilt mirror and sensor configuration 

  
Telescope 

Tip-tilt mirror Deformable mirror 

Beam splitter 

Beam splitter 

Wavefront sensor 

Imaging camera 

Tip-tilt sensor 
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Sky coverage is determined by 
distribution of (faint) tip-tilt stars 

•  Keck: >18th magnitude 

1"

0 

271 degrees of freedom 
5 W cw laser 

Galactic latitude = 90° 
Galactic latitude = 30° 

From Keck AO book 
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“Cone effect” or “focal anisoplanatism”  
for laser guide stars 

•  Two contributions:  

–  Unsensed turbulence 
above height of guide star 

–  Geometrical effect of 
unsampled turbulence at 
edge of pupil 

from A. Tokovinin 
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Cone effect, continued 

•  Characterized by parameter d0 

•  Hardy Sect. 7.3.3 (cone effect = focal anisoplanatism) 

   σFA
2 = ( D / d0)5/3 

•  Typical sizes of d0 ~ a few meters to 20 meters 
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Dependence of d0 on beacon altitude 

•  One Rayleigh beacon OK for D < 4 m at λ = 1.65 micron 

•  One Na beacon OK for D < 10 m at λ = 1.65 micron 

from Hardy	
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Effects of laser guide star on overall AO 
error budget 

•  The good news:  
–  Laser is brighter than your average natural guide star 

» Reduces measurement error 
–  Can point it right at your target  

» Reduces anisoplanatism 

•  The bad news: 
–  Still have tilt anisoplanatism          σtilt

2 = ( θ / θtilt )5/3 
–  New: focus anisoplanatism            σFA

2 = ( D / d0 )5/3 
–  Laser spot larger than NGS            σmeas

2 ~ ( 6.3 / SNR )2 
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Compare NGS and LGS performance  
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Main Points 

•  Rayleigh beacon lasers are straightforward to purchase, 
but single beacons are limited to medium sized 
telescopes due to focal anisoplanatism 

•  Sodium layer saturates at high peak laser powers 

•  Sodium beacon lasers are harder: 
–  Dye lasers (today) inefficient, hard to maintain 
–  Solid-state lasers are better 
–  Fiber lasers may be better still 

•  Added contributions to error budget from LGS’s 
–  Tilt anisoplanatism, cone effect, larger spot 


